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Abstract

Addressing the critical global health crisis posed by antimicrobial resistance (AMR), this project uti-
lized a deep learning approach to mine peptide proteomes, focusing on the novel application of molecular
de-extinction to identify potential antimicrobial peptides (AMPs) from ancient organisms. We developed
and benchmarked an APEX-based Sequence Encoder, which achieved robust in-distribution performance
(Spearman rho = 0.79), confirming its utility for sequence-based prediction. However, testing the model
on an out-of-distribution (OOD) dataset of extinct peptides resulted in a significant performance col-
lapse (rho = 0.36), confirming the challenge of evolutionary generalization. To stabilize OOD prediction,
we investigated the hypothesis that 3D context is required, integrating five explicit AlphaFold struc-
tural features via transfer learning. Feature importance analysis revealed that the model rejected the
structural data (contributing j1% feature weight), providing a crucial scientific insight: the low-value of
static structural predictions (e.g., disordered state) for dynamic, membrane-targeting AMPs. This work
successfully validates a high-performance sequence baseline but ultimately establishes that the primary
bottleneck in next-generation AMP discovery lies in the current inability to model dynamic, bio active
structural states.

1 Motivation

Antimicrobial resistance (AMR) refers to the evolution of bacteria, viruses, fungi, and parasites against
traditional antimicrobial compounds. The World Health Organization predicts that AMR will be associated
with over 10 million annual deaths by 2050 [5].

Traditional experimental antibiotic discovery cannot keep pace with the rate at which bacteria develop
resistance mechanisms due to the high costs of development, the depletion of easily accessible natural reser-
voirs, and complex regulatory hurdles. As a result, computational and artificial intelligence approaches have
recently emerged as powerful tools for high-throughput antibiotic discovery [7].

Specifically, novel antibiotics can be discovered through proteome mining, a data-driven exploration of
the complete set of proteins in an organism to infer structural, functional, and evolutionary properties. In
previous work, this approach has identified antimicrobial peptide (AMP) candidates, which are short protein
sequences serving as an innate defense mechanism across a wide range of species [2]. These computational
efforts have the potential to substantially accelerate early-stage discovery of antimicrobial compounds.

Critically, this computational approach enables molecular de-extinction, the novel application of Al to
mine the proteomes of extinct organisms. By analyzing ancient protein sequences (such as those from the
woolly mammoth), researchers can identify evolutionarily distant AMP candidates that current organisms no
longer possess. This process represents a unique and powerful avenue for finding novel antibiotics untouched
by modern resistance mechanisms.

Altogether, the aim of this project is twofold.

Aim 1: To train a deep learning model that learns high-dimensional latent representations of antimi-
crobial peptides directly from raw sequence data and to rigorously compare its accuracy with traditional
baseline models.

Aim 2: To test the generalization of this model on an out-of-distribution dataset of extinct peptides.



2 Related Work

2.1 Deep Learning for Antimicrobial Peptide Discovery

Deep learning models have been employed to mine proteomes for the identification of antimicrobial
peptides. A prominent example, which heavily inspired this project, is the APEX (Antibiotic Peptide de-
Extinction) model [7]. APEX uses a multitask deep learning architecture consisting of a peptide-sequence
encoder combining recurrent neural networks (RNNs) with attention mechanisms to extract hidden features
from peptide sequences. Specifically, hidden features are extracted using a Gated Recurrent Unit (GRU),
followed by attention layers which are fed into fully connected neural networks (FCNNs) to perform two
distinct tasks:

1. Predict species-specific antimicrobial activity against pathogenic bacteria.
2. Predict binary antimicrobial activity using public data as a form of data augmentation.

Antimicrobial activity is quantified by the minimum inhibitory concentration (MIC), which is the lowest
concentration of a peptide sequence necessary to prevent the growth of a pathogen in the laboratory. MIC
can then be binarized to classify whether a certain peptide sequence is an antimicrobial peptide. For example,
APEX defined an inactive peptide as any peptide sequence with an MIC greater than 30 umol_l.

3 Data Set

3.1 Large-Scale Training Data

The publicly available Database of Antimicrobial Activity and Structure of Peptides (DBAASP) [6]
was used to train the encoder and the baseline models for Aim 1. A total of 23944 unique sequences,
their corresponding features (e.g. peptide complexity, synthesis type, N terminal), and their peptide-target
interactions were mined. The dataset also includes information about bacterial targets, particularly target
group, target object, and minimum inhibitory concentration (MIC) values for each of the 7879 targets in the
dataset.

3.2 Feature Engineering and Data Preprocessing

Raw peptide entries from DBAASP were transformed into a structured peptide-target MIC feature matrix
to enable machine-learning-based prediction. Because MIC data were extremely sparse across the 7,879
microbial targets (Fig. ), a filtering step was applied in which all targets with fewer than 200 non-zero
MIC values were removed. This procedure reduced the set of microbial targets to 50 high-coverage targets
(Fig. [ID).

Following target filtering, the dataset was converted into a long-format representation, in which each
row corresponded to a unique (peptide, target) pair with an associated MIC value. This restructuring
substantially reduced sparsity and produced a dense, learning-ready dataset (Fig. )

For the input feature set, physicochemical peptide properties were calculated by modlAMP (version 4.3.0)
[], including sequence length, molecular weight, sequence charge, charge density, isoelectric point, instability
index, aromaticity, aliphatic index, Boman index, and hydrophobic density. Missing numerical values were
imputed using the median of the cleaned dataset to preserve distribution characteristics. Additionally,
irrelevant columns were dropped and categorical features such as peptide synthesis type and bacterial target
groups were label encoded.

Upon completion of preprocessing, the dataset included 25,306 unique peptide-target interactions, with
6,233 total unique sequences and 50 bacterial targets, along with important physicochemical information for

each peptide (Fig. )
3.2.1 Class Distribution

The dataset includes a variable is_AMP indicating if a peptide is an active AMP or an inactive peptide,
based on the earlier defined MIC threshold (Fig. ) Based on the number of peptide-target interactions



classified as having AMP activity, a class imbalance was observed, thus emphasizing the need for data
stratification in train-test splits.
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Figure 1: A) Preprocessing pipeline B) Sparsity heatmap showing the distribution of non-zero MIC values
across a randomly sampled subset of targets. C) Sparsity heatmap for the filtered set of targets with > 200
non-zero MIC measurements, illustrating the substantially denser target-peptide matrix. D) Histogram
showing the distribution of targets that exceed the 200-peptide threshold and number of peptides with non-
zero MIC values. E) Bar graph showing binarized peptide-target interactions.

3.3 Experimentally Validated AMPs

A set of 69 extinct peptides experimentally assessed in the APEX study was incorporated as an external
evaluation cohort. Of these peptides, 41 demonstrated antimicrobial activity against at least one bacterial
strain. Because these sequences were previously identified computationally as high-probability AMPs, they
provide a high-quality benchmark for evaluating model generalization. The objective of this work is to
incorporate additional structural and feature-based information to improve discrimination of the 41 validated
AMPs from the broader set of 69 peptides.

3.4 Curation of Structural Data with AlphaFold

Augmentation of sequence-based features with structural information from AlphaFold (AF) [I] was ex-
plored for Aim 2, with the goal of creating a more accurate, multi-modal discovery pipeline. The less GPU-
intensive ColabFold [3] implementation was employed to generate AlphaFold representations. However, this
process was impeded by significant technical and resource limitations.

4 Problem Formulation

We formulate the prediction of log2-transformed MIC as a supervised regression task. This approach
preserves the continuous nature of peptide potency, prioritizing the accurate modeling of extreme values
critical for drug ranking.

4.1 Feature Engineering & Representation

Unlike prior studies that averaged MIC values, we employ a long-format representation where each row
corresponds to a unique peptide-target pair. This allows the model to treat the bacterial strain as an explicit
predictive feature, preserving specificity.
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Figure 2: APEXEncoder Architecture. The model utilizes a dual-arm framework to predict log2(MIC).
The Peptide Encoder (ARM 1) processes sequence embeddings with a bidirectional Gated Recurrent Unit
(GRU), using a two-stage attention mechanism aggregating both hidden states and original input embed-
dings. The Target Encoder (ARM 2) maps target IDs to a dense vector space. Finally, the resulting feature
representations are concatenated and processed through a Multi-Layer Perceptron (MLP) prediction head).

4.2 Model & AlphaFold Extension

To accommodate this multi-modal input, we implemented a Two-Arm Encoder (Fig. [2)) processing
peptide and target features separately. For Aim 2, we adopted a symmetric formulation, augmenting sequence
features with condensed AlphaFold structural statistics to evaluate if explicit 3D context enhances prediction
stability.

5 Methods

5.1 Initial Architecture: APEX-based Two-Arm Encoder

To predict Antimicrobial Peptide (AMP) activity, we implemented APEXEncoder, a custom Two-Arm
Encoder Neural Network adapted from the APEX [7] architecture (Fig. [2). This architecture was chosen
to effectively model the interaction between two distinct modalities: the peptide sequence and the target
bacterial strain.

1. Sequence Branch: Peptide sequences are tokenized and processed through a Bi-directional Gated
Recurrent Unit (Bi-GRU). This allows the model to capture sequential dependencies and contextual
information from both N-terminal and C-terminal directions. An attention mechanism is applied to
the GRU outputs to weight the importance of specific amino acid residues before pooling.

2. Target Branch: Bacterial strains are represented via learnable embeddings, allowing the model to
capture latent similarities between different target organisms (e.g., Gram-positive vs. Gram-negative
characteristics).

3. Training and Optimization: The model predicts log2-transformed Minimum Inhibitory Concentra-
tion (MIC) values. We trained across 5 random seeds with randomized 80/20 train/test splits to ensure
robustness. Optimization was performed using Adam, with early stopping (patience=>5) monitoring
validation loss to prevent overfitting.



5.2 Baseline Benchmarking

To validate the necessity of a deep learning approach, we benchmarked APEXEncoder against traditional
machine learning algorithms.

1. Linear Models: We evaluated Linear SVM and Nystrom-SGD. These models were selected to confirm
that the sequence-activity relationship is non-linear.

2. Tree-Based Models: We implemented Random Forest and XGBoost regressors. Unlike the linear
baselines, these models captured significant signals, serving as a competitive baseline. Performance
was evaluated using both R? and Spearman’s Rank Correlation, the latter being critical for prioritizing
drug candidates. All tree-based models were supplied with one-hot encoded bacterial targets to ensure
fairness of comparison against the NN’s Target Branch.

5.3 Hybrid Architecture

We hypothesized that explicit domain knowledge could guide the model in data-scarce regimes. We
expanded the architecture into a Three-Arm “Hybrid” Encoder. This was accomplished by supplementing
the peptide encoder and the target encoder with a physicochemical feature branch, where the 12 features
calculated for the baseline models (e.g., net charge, hydrophobicity, isoelectric point, instability index) were
normalized and processed through a dedicated dense layer before being concatenated with the sequence and
target embeddings.

5.4 Ensemble Strategy

We implemented a Deep Ensemble by aggregating predictions from 25 independently trained models (5
independent training runs for 5 random seeds). While this reduced prediction variance and offered marginal
stability improvements, the performance gain was insufficient to justify the 5-fold increase in computational
inference cost.

5.5 Out-of-Distribution Generalization (Extinct Peptides)

To evaluate the model’s utility for de novo drug discovery, we tested it on a strictly out-of-distribution
(OOD) dataset of extinct peptide, sequences from ancient organisms (e.g., Woolly Mammoth, Mylodon)
that share little homology with modern peptides. This generalization test mimics the real world scenario of
mining novel biological sources for undiscovered AMPs.

5.6 Investigating Structural Contribution via AlphaFold Integration

In an attempt to improve performance on OOD extinct peptides, we initiated a technical investiga-
tion to determine whether explicit biophysical context could stabilize predictions where sequence homology
fails. Particularly, we investigated the ability of protein structure prediction model AlphaFold in stabilizing
predictions where sequence homology fails.

1. Structural Feature Extraction: Static structural models were generated using AlphaFold for 460
peptides in the novel datasets (limited due to the compute time of AlphaFold). Five quantitative
features were engineered from the PDB files, including Mean pLDDT, Fractional Helix/Sheet, Backbone
Rigidity, and Average Degree.

2. Feature Fusion Test Design: We employed a Transfer Learning approach where the pre-trained,
128-dimensional sequence embedding (trained on the full dataset) was extracted and concatenated with
the five AlphaFold structural features. This composite vector was then fed into a simple Random Forest
Regressor. This design ensures a direct, quantitative comparison of the predictive power contributed
by sequence knowledge vs. structural context.



6 Experiments and Results

6.1 Baseline Performance Analysis

APEXEncoder demonstrated strong predictive capabilities, successfully converging and learning complex
sequence-activity relationships. The model achieved an average R? of 0.619 + 0.0139 and a Spearman-Rank
Correlation (p) of 0.788, outperforming the metrics reported in the reference study, which achieved an R?
of 0.37 and p of 0.55-0.62 for single models [7] (Fig. ) However, it is important to acknowledge that
our use of a randomized 80/20 split likely simplified the generalization task compared to the cluster-based
cross-validation or leave-one-species-out validation likely used in the reference paper.

6.1.1 Baseline Error Analysis

Parity and residual plots indicate the model “plays it safe”, systematically over-predicting low MIC values
(predicting them as less potent) and under-predicting high MIC values (predicting them as more potent).
However, the high Spearman correlation (0.79) confirms the model effectively preserves rank order, which is
the primary requirement for prioritizing lead candidates in drug discovery (Fig. -C).

6.2 APEXEncoder Benchmarking

We benchmarked the Deep Learning approach against standard ML regressors to establish a performance
hierarchy (Table [I)).

Table 1: Benchmarking Results

Model Result
R? p
APEXEncoder 0.62 0.79
Random Forest 0.61 0.78
XGBoost 0.61 0.78
Linear Baselines | < .20 —

This hierarchy validates that non-linear, high-capacity models are required to capture the complex gram-
mar of antimicrobial peptides.

6.3 Hybrid Model Results (Injection of Physicochemical Features)

We hypothesized that injecting 12 explicit physicochemical features (e.g., charge, hydrophobicity) would
improve performance. The hybrid model achieved an R? of 0.630 4 0.0239, a statistically negligible improve-
ment over the baseline. Feature importance analysis revealed that the model assigned > 99% importance
to the learned sequence embeddings and < 1% to the explicit features(Fig. ) This suggests the deep
sequence encoder had already implicitly learned these physical properties, rendering the explicit injection
redundant.

6.4 Ensemble Performance

We evaluated a Deep Ensemble of 25 models to determine if aggregating predictions could reduce variance.
The ensemble achieved an R? of 0.626 #+ 0.0095 and an MSE of 0.37, offering only marginal gains over
the single-best model. However, the variance did decrease (Fig. ) While ensembling provided a slight
improvement in stability, the performance gain was insufficient to justify the 25x increase in training and
inference cost. Given the high performance of our single models, we determined that model capacity was
not the limiting factor.



6.5 Generalization to Extinct Peptides (OOD Testing)

To stress-test the model, we evaluated it on a dataset of extinct peptide sequences from the reference
paper, a strictly out-of-distribution task involving ancient sequences. All models suffered a significant per-
formance regression (Table [2), characteristic of OOD generalization issues (Fig. BJF).

Table 2: OOD Testing

Model ‘ p
APEXEncoder | 0.36
Random Forest | 0.33

XGBoost 0.33

While our model retained a slight edge over the baselines, the drop in p highlights the difficulty of
generalizing to evolutionary distant sequences based on sequence alone. The features were weak, and the
model regressed to the mean.

6.6 3D Structure Integration (AlphaFold)

We integrated 3D structural features derived from AlphaFold predictions for approximately 460 peptides.
However, the this yielded no improvement in predictions. Analysis of AlphaFold data revealed that > 75% of
the peptides were predicted to have no secondary structures (Fig. ) This aligns with the fact that AMPs
are intrinsically disordered in solution and only fold upon membrane contact. AlphaFold likely failed to
capture the bioactive conformation, rendering the features non-informative for this specific predictive task.
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Figure 3: A) XGBoost Baseline Performance: Parity Plot and Residual Plot for the XGBoost regressor,
illustrating a goodness of fit of R? = 0.43 on the in-distribution data and confirming the model’s non-linear
signal capture. B) and C) Baseline Model Performance: Parity Plots (R?) and Residual Plots for
XGBoost (B) and Random Forest (C) regressors on the ID training data. D) Deep Learning Model Di-
agnostics: Learning Curves (and Aggregated Parity Plot for the Hybrid Neural Network, illustrating model
stability and goodness of fit (R?). E) Ensemble Model Diagnostics: Learning Curves and Aggregated
Parity Plot for the Deep Ensemble. F) Out-of-Distribution (OOD) Generalization: Parity Plot for
the Ensemble Model tested on the Extinct Peptide Data (OOD set). G) Structural Feature Analysis:
Top: Hybrid Model Accuracy and Feature Importance, structural features (orange), sequence embeddings
(blue). Bottom: Histogram showing the Distribution of Helix Fraction in the training peptides.



6.7 Reproducibility, Initialization, and Performance

To ensure reproducibility and robustness, all models were evaluated using a randomized 80/20 train/test
split, with performance metrics reported as the average and standard deviation across five independent
random seeds. The APEXEncoder was optimized using the Adam algorithm with early stopping (patience of
5 epochs) monitoring validation loss. Baseline tree-based models were initialized with fixed hyperparameters-
n_estimators=100 for Random Forest and n_estimators=200 with learning rate=0.05 for XGBoost-to
maintain consistency across comparisons.

6.8 Performance
Two primary metrics were used to asses model performance.

e Coefficient of Determination(R?): Quantifies the proportion of the variance in the dependent
variable (MIC) that is predictable from the independent variables.

e Spearman Rank Correlation (p): Used as the primary measure of the model’s ranking capability.
The Spearman coefficient validates the model’s utility for prioritizing drug discovery hits.

7 Conclusion and Discussion

7.1 Summary of Findings and Model Assignment

The project successfully established a high-performance deep learning baseline for predicting Minimum
Inhibitory Concentration (MIC), but critical limitations were revealed in the advanced feature-engineering
efforts when evaluated on Out-of-Distribution (OOD) data. Baseline performance reached an R? = 0.62 and
a Spearman correlation of p = 0.79, demonstrating stable in-distribution interpolation capability.

However, attempts to introduce explicit domain knowledge were found to be ineffective. Feature-
redundancy analyses indicated that the inclusion of physicochemical descriptors and aggregated 3D structural
features produced less than a 1% performance gain, suggesting that these external features were computa-
tionally redundant because the sequence encoder had implicitly learned the same information.

The most consequential observation arose from the generalization assessment. A critical failure point
was identified when the model was evaluated on OOD “extinct” peptides: the Spearman correlation col-
lapsed to p = 0.36, indicating that reliance on sequence information alone resulted in brittle performance
for evolutionarily distant peptides.

Finally, ensemble modeling was deemed inefficient. The marginal improvement in p was not sufficient
to justify the 25X increase in computational cost, indicating that ensemble complexity did not yield propor-
tionate gains in predictive accuracy.

7.2 AlphaFold Exploration

While structural data is a novel feature that holds immense potential for enhancing our task, its effective
implementation was hindered by significant contextual difficulties.

7.2.1 Computational Constraints and Data Representation Challenges

Generation of AF predictions was found to be highly demanding, running slowly and requiring more
computational resources than were readily available. The primary bottleneck was memory consumption,
which became problematic for longer sequences. Due to these resource constraints, after many days of
running, AlphaFold representations were successfully generated for only 756 peptides of length < 10 residues
for training, out of a total of 6,233 unique sequences. Representations were also generated for 57 of the 69
extinct peptides used for testing.

A major challenge in data representation for subsequent machine learning model input was posed by
the structural outputs from AlphaFold. Outputs from the most confident AF model included detailed per-
residue features, such as phi and psi torsional angles, contact maps, and confidence scores for the positioning



of each residue. Peptide sequences are inherently of variable length, resulting in feature vectors of variable
dimensions. Consequently, individual AF representations could not be represented as a constant-dimensional
(N-dimensional) array, which is required for standard machine learning models.

To address the invariant length challenge and make use of the partial structural data that had been
generated, summary statistics were computed from the detailed per-residue AF outputs. This approach
ensured that each peptide sequence was represented by a single, fixed-length vector in a master CSV, suitable
for subsequent model training.

7.2.2 Future Dataset Generation

The most critical opportunity for future research lies in fully realizing the multi-modal goal of Aim 2.
This requires overcoming the variable-length limitation to integrate rich structural information. With more
available compute power, we would preferably run the full AlphaFold 2 system rather than ColabFold, as
it offers higher computational efficiency and greater control over the generation process. This increased
capacity is essential for generating structural representations for all 6,233 unique peptide sequences in the
dataset.

Implementing a Graph Neural Network (GNN) has strong potential as a method to fully realize the
multi-modal goal of Aim 2 and utilize the rich structural information from AlphaFold (AF). Future work
must transition from fixed-input architectures to methods capable of processing graph-structured data. Im-
plementing a Graph Neural Network (GNN) would allow the model to directly use the detailed, variable-sized
AF outputs such as contact maps or predicted residue coordinates. This would fully test the hypothesis that
structural knowledge noticeably improves MIC prediction without losing information in summary statistics.
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